Plot a comet lightcurve from sssource

References: Table definitions are in the Data Products Definition Document … but at the time of the SSSC Sprint 2022, the simulated data products were not fully filled out.

Author: Mike Kelley

import psycopg2 as pg
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from astropy.time import Time
import astropy.units as u
from sbpy.activity import Afrho
from sbpy.data import Ephem
pwd = open("/home/shared/sssc-db-pass.txt").read()
con = pg.connect(database="lsst_solsys", user="sssc", password=pwd, host="epyc.astro.washington.edu", port="5432")
# define what orbit constitutes a cometary orbit
comet_params = {'T_J_max': 2.95,  # Tisserand no larger than this
                'e_min': 0.98}    # Eccentricity no smaller than this
# find a "comet"
df = pd.read_sql(
    """SELECT * FROM mpcorb
       INNER JOIN ssobjects ON (ssobjects.ssobjectid = mpcorb.ssobjectid)
       WHERE mpcorb.e > %(e_min)s
          OR (5.204 / (mpcorb.q / (1 - mpcorb.e)) + 2 * COS(RADIANS(mpcorb.incl)) * SQRT((mpcorb.q / (1 - mpcorb.e)) / 5.204 * (1 - mpcorb.e * mpcorb.e))) < %(T_J_max)s
       LIMIT 1""",
    con,
    params=comet_params)
comet = df.iloc[0]  # get first row of result
comet
/opt/conda/envs/rubin-sims-v0.9.0/lib/python3.9/site-packages/pandas/io/sql.py:761: UserWarning: pandas only support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBAPI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
  warnings.warn(
mpcdesignation           S0000002a
mpcnumber                               0
ssobjectid            8447890486452875146
mpch                               10.818
mpcg                                 0.15
                             ...
yndata                                121
maxextendedness                       0.0
minextendedness                       0.0
medianextendedness                    0.0
flags                                   0
Name: 0, Length: 82, dtype: object
# get the photometry:
#   select all columns in sssources
#   combine columns from diasources where diasourceid matches
#   but limit results to the ssobjectid of our comet
phot = pd.read_sql(
    """SELECT * FROM sssources
       INNER JOIN diasources ON (sssources.diasourceid = diasources.diasourceid)
       WHERE sssources.ssobjectid=%(ssobjectid)s""",
    con, params=comet.to_dict()
)
phot
/opt/conda/envs/rubin-sims-v0.9.0/lib/python3.9/site-packages/pandas/io/sql.py:761: UserWarning: pandas only support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBAPI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
  warnings.warn(
ssobjectid diasourceid mpcuniqueid eclipticlambda eclipticbeta galacticl galacticb phaseangle heliocentricdist topocentricdist ... declsigma ra_decl_cov snr filter mag magsigma _v _magtrue _ratrue _dectrue
0 8447890486452875146 6587841883066085399 0 356.851153 -9.107452 87.580395 -69.084319 14.546751 3.807186 4.020755 ... 0.000002 0.0 285.768900 z 17.260214 0.003793 17.560200 17.262200 0.767115 -9.601787
1 8447890486452875146 -7159109279155723609 0 59.308329 -20.952154 191.588482 -36.273875 4.187695 5.123790 4.197462 ... 0.000002 0.0 216.541660 y 17.558233 0.005002 17.857492 17.554491 61.530780 -0.494978
2 8447890486452875146 -4873256491932764747 0 59.311096 -20.952397 191.589976 -36.271576 4.186626 5.123845 4.197483 ... 0.000002 0.0 195.382460 y 17.549963 0.005543 17.857466 17.554466 61.533365 -0.494686
3 8447890486452875146 1305559744654628332 0 60.777308 -21.022067 192.309727 -35.031886 3.955013 5.153281 4.219282 ... 0.000002 0.0 540.058200 g 18.168968 0.002009 17.868053 18.170053 62.888899 -0.291068
4 8447890486452875146 8397385236521954431 0 60.780459 -21.022114 192.311149 -35.029184 3.955291 5.153343 4.219349 ... 0.000002 0.0 135.950940 u 19.484653 0.007957 17.868130 19.482130 62.891785 -0.290542
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
554 8447890486452875146 -8365500290426860658 0 34.527426 -19.093226 175.458082 -56.962581 8.344400 6.276025 5.771223 ... 0.000003 0.0 69.733864 y 18.868198 0.015459 19.190887 18.887888 38.601893 -4.994305
555 8447890486452875146 1801058191567595533 0 34.570614 -19.042110 175.406049 -56.903650 8.413429 6.275298 5.784518 ... 0.000002 0.0 85.718470 y 18.874094 0.012593 19.198600 18.895601 38.623722 -4.932613
556 8447890486452875146 -5207186459605150284 0 39.135911 -21.091318 181.754242 -53.806591 5.196970 6.077328 5.233632 ... 0.000003 0.0 68.407200 u 20.357357 0.015757 18.761307 20.375305 43.361119 -5.504170
557 8447890486452875146 -1561380110165288203 0 38.500882 -20.928133 181.115598 -54.293918 5.775282 6.069448 5.264884 ... 0.000002 0.0 354.167180 r 18.627779 0.003061 18.800613 18.628614 42.744100 -5.533677
558 8447890486452875146 5393674587725488964 0 38.498826 -20.927539 181.113408 -54.295468 5.777224 6.069422 5.264998 ... 0.000002 0.0 277.129180 i 18.507975 0.003911 18.800749 18.509748 42.742081 -5.533712

559 rows × 49 columns

# package ephemeris information into an sbpy object
eph = Ephem.from_dict({'rh': phot['heliocentricdist'].values * u.au,
                       'delta': phot['topocentricdist'].values * u.au,
                       'phase': phot['phaseangle'].values * u.deg})

# simulated diasources do not have aperture information, but we use this for now:
aper = 2 * u.arcsec
fig = plt.figure(1, (8, 4.5), dpi=300)
ax = fig.add_subplot(111)

for filt in 'ugrizy':
    i = phot['filter'].values == filt
    afrho = Afrho.from_fluxd(f'LSST {filt}', phot['mag'][i].values * u.ABmag, aper, eph[i])
    ax.scatter(phot['heliocentricdist'][i], afrho, marker='.', label=filt)

plt.setp(ax, xlabel='rh (au)', ylabel=r'$A(\theta)f\rho$ (cm)')
plt.legend()
plt.show()
../../_images/sssource-plot-a-comet-lightcurve_7_0.png