Plot a comet lightcurve from sssource
¶
References: Table definitions are in the Data Products Definition Document … but at the time of the SSSC Sprint 2022, the simulated data products were not fully filled out.
Author: Mike Kelley
import psycopg2 as pg
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from astropy.time import Time
import astropy.units as u
from sbpy.activity import Afrho
from sbpy.data import Ephem
pwd = open("/home/shared/sssc-db-pass.txt").read()
con = pg.connect(database="lsst_solsys", user="sssc", password=pwd, host="epyc.astro.washington.edu", port="5432")
# define what orbit constitutes a cometary orbit
comet_params = {'T_J_max': 2.95, # Tisserand no larger than this
'e_min': 0.98} # Eccentricity no smaller than this
# find a "comet"
df = pd.read_sql(
"""SELECT * FROM mpcorb
INNER JOIN ssobjects ON (ssobjects.ssobjectid = mpcorb.ssobjectid)
WHERE mpcorb.e > %(e_min)s
OR (5.204 / (mpcorb.q / (1 - mpcorb.e)) + 2 * COS(RADIANS(mpcorb.incl)) * SQRT((mpcorb.q / (1 - mpcorb.e)) / 5.204 * (1 - mpcorb.e * mpcorb.e))) < %(T_J_max)s
LIMIT 1""",
con,
params=comet_params)
comet = df.iloc[0] # get first row of result
comet
/opt/conda/envs/rubin-sims-v0.9.0/lib/python3.9/site-packages/pandas/io/sql.py:761: UserWarning: pandas only support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBAPI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
warnings.warn(
mpcdesignation S0000002a
mpcnumber 0
ssobjectid 8447890486452875146
mpch 10.818
mpcg 0.15
...
yndata 121
maxextendedness 0.0
minextendedness 0.0
medianextendedness 0.0
flags 0
Name: 0, Length: 82, dtype: object
# get the photometry:
# select all columns in sssources
# combine columns from diasources where diasourceid matches
# but limit results to the ssobjectid of our comet
phot = pd.read_sql(
"""SELECT * FROM sssources
INNER JOIN diasources ON (sssources.diasourceid = diasources.diasourceid)
WHERE sssources.ssobjectid=%(ssobjectid)s""",
con, params=comet.to_dict()
)
phot
/opt/conda/envs/rubin-sims-v0.9.0/lib/python3.9/site-packages/pandas/io/sql.py:761: UserWarning: pandas only support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBAPI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
warnings.warn(
ssobjectid | diasourceid | mpcuniqueid | eclipticlambda | eclipticbeta | galacticl | galacticb | phaseangle | heliocentricdist | topocentricdist | ... | declsigma | ra_decl_cov | snr | filter | mag | magsigma | _v | _magtrue | _ratrue | _dectrue | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 8447890486452875146 | 6587841883066085399 | 0 | 356.851153 | -9.107452 | 87.580395 | -69.084319 | 14.546751 | 3.807186 | 4.020755 | ... | 0.000002 | 0.0 | 285.768900 | z | 17.260214 | 0.003793 | 17.560200 | 17.262200 | 0.767115 | -9.601787 |
1 | 8447890486452875146 | -7159109279155723609 | 0 | 59.308329 | -20.952154 | 191.588482 | -36.273875 | 4.187695 | 5.123790 | 4.197462 | ... | 0.000002 | 0.0 | 216.541660 | y | 17.558233 | 0.005002 | 17.857492 | 17.554491 | 61.530780 | -0.494978 |
2 | 8447890486452875146 | -4873256491932764747 | 0 | 59.311096 | -20.952397 | 191.589976 | -36.271576 | 4.186626 | 5.123845 | 4.197483 | ... | 0.000002 | 0.0 | 195.382460 | y | 17.549963 | 0.005543 | 17.857466 | 17.554466 | 61.533365 | -0.494686 |
3 | 8447890486452875146 | 1305559744654628332 | 0 | 60.777308 | -21.022067 | 192.309727 | -35.031886 | 3.955013 | 5.153281 | 4.219282 | ... | 0.000002 | 0.0 | 540.058200 | g | 18.168968 | 0.002009 | 17.868053 | 18.170053 | 62.888899 | -0.291068 |
4 | 8447890486452875146 | 8397385236521954431 | 0 | 60.780459 | -21.022114 | 192.311149 | -35.029184 | 3.955291 | 5.153343 | 4.219349 | ... | 0.000002 | 0.0 | 135.950940 | u | 19.484653 | 0.007957 | 17.868130 | 19.482130 | 62.891785 | -0.290542 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
554 | 8447890486452875146 | -8365500290426860658 | 0 | 34.527426 | -19.093226 | 175.458082 | -56.962581 | 8.344400 | 6.276025 | 5.771223 | ... | 0.000003 | 0.0 | 69.733864 | y | 18.868198 | 0.015459 | 19.190887 | 18.887888 | 38.601893 | -4.994305 |
555 | 8447890486452875146 | 1801058191567595533 | 0 | 34.570614 | -19.042110 | 175.406049 | -56.903650 | 8.413429 | 6.275298 | 5.784518 | ... | 0.000002 | 0.0 | 85.718470 | y | 18.874094 | 0.012593 | 19.198600 | 18.895601 | 38.623722 | -4.932613 |
556 | 8447890486452875146 | -5207186459605150284 | 0 | 39.135911 | -21.091318 | 181.754242 | -53.806591 | 5.196970 | 6.077328 | 5.233632 | ... | 0.000003 | 0.0 | 68.407200 | u | 20.357357 | 0.015757 | 18.761307 | 20.375305 | 43.361119 | -5.504170 |
557 | 8447890486452875146 | -1561380110165288203 | 0 | 38.500882 | -20.928133 | 181.115598 | -54.293918 | 5.775282 | 6.069448 | 5.264884 | ... | 0.000002 | 0.0 | 354.167180 | r | 18.627779 | 0.003061 | 18.800613 | 18.628614 | 42.744100 | -5.533677 |
558 | 8447890486452875146 | 5393674587725488964 | 0 | 38.498826 | -20.927539 | 181.113408 | -54.295468 | 5.777224 | 6.069422 | 5.264998 | ... | 0.000002 | 0.0 | 277.129180 | i | 18.507975 | 0.003911 | 18.800749 | 18.509748 | 42.742081 | -5.533712 |
559 rows × 49 columns
# package ephemeris information into an sbpy object
eph = Ephem.from_dict({'rh': phot['heliocentricdist'].values * u.au,
'delta': phot['topocentricdist'].values * u.au,
'phase': phot['phaseangle'].values * u.deg})
# simulated diasources do not have aperture information, but we use this for now:
aper = 2 * u.arcsec
fig = plt.figure(1, (8, 4.5), dpi=300)
ax = fig.add_subplot(111)
for filt in 'ugrizy':
i = phot['filter'].values == filt
afrho = Afrho.from_fluxd(f'LSST {filt}', phot['mag'][i].values * u.ABmag, aper, eph[i])
ax.scatter(phot['heliocentricdist'][i], afrho, marker='.', label=filt)
plt.setp(ax, xlabel='rh (au)', ylabel=r'$A(\theta)f\rho$ (cm)')
plt.legend()
plt.show()
