Plot a comet lightcurve from ``sssource`` ========================================= References: Table definitions are in the `Data Products Definition Document `__ … but at the time of the SSSC Sprint 2022, the simulated data products were not fully filled out. Author: Mike Kelley .. code:: ipython3 import psycopg2 as pg import pandas as pd import numpy as np import matplotlib.pyplot as plt from astropy.time import Time import astropy.units as u from sbpy.activity import Afrho from sbpy.data import Ephem .. code:: ipython3 pwd = open("/home/shared/sssc-db-pass.txt").read() con = pg.connect(database="lsst_solsys", user="sssc", password=pwd, host="epyc.astro.washington.edu", port="5432") .. code:: ipython3 # define what orbit constitutes a cometary orbit comet_params = {'T_J_max': 2.95, # Tisserand no larger than this 'e_min': 0.98} # Eccentricity no smaller than this .. code:: ipython3 # find a "comet" df = pd.read_sql( """SELECT * FROM mpcorb INNER JOIN ssobjects ON (ssobjects.ssobjectid = mpcorb.ssobjectid) WHERE mpcorb.e > %(e_min)s OR (5.204 / (mpcorb.q / (1 - mpcorb.e)) + 2 * COS(RADIANS(mpcorb.incl)) * SQRT((mpcorb.q / (1 - mpcorb.e)) / 5.204 * (1 - mpcorb.e * mpcorb.e))) < %(T_J_max)s LIMIT 1""", con, params=comet_params) comet = df.iloc[0] # get first row of result comet .. parsed-literal:: /opt/conda/envs/rubin-sims-v0.9.0/lib/python3.9/site-packages/pandas/io/sql.py:761: UserWarning: pandas only support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBAPI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy warnings.warn( .. parsed-literal:: mpcdesignation S0000002a mpcnumber 0 ssobjectid 8447890486452875146 mpch 10.818 mpcg 0.15 ... yndata 121 maxextendedness 0.0 minextendedness 0.0 medianextendedness 0.0 flags 0 Name: 0, Length: 82, dtype: object .. code:: ipython3 # get the photometry: # select all columns in sssources # combine columns from diasources where diasourceid matches # but limit results to the ssobjectid of our comet phot = pd.read_sql( """SELECT * FROM sssources INNER JOIN diasources ON (sssources.diasourceid = diasources.diasourceid) WHERE sssources.ssobjectid=%(ssobjectid)s""", con, params=comet.to_dict() ) phot .. parsed-literal:: /opt/conda/envs/rubin-sims-v0.9.0/lib/python3.9/site-packages/pandas/io/sql.py:761: UserWarning: pandas only support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBAPI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy warnings.warn( .. raw:: html
ssobjectid diasourceid mpcuniqueid eclipticlambda eclipticbeta galacticl galacticb phaseangle heliocentricdist topocentricdist ... declsigma ra_decl_cov snr filter mag magsigma _v _magtrue _ratrue _dectrue
0 8447890486452875146 6587841883066085399 0 356.851153 -9.107452 87.580395 -69.084319 14.546751 3.807186 4.020755 ... 0.000002 0.0 285.768900 z 17.260214 0.003793 17.560200 17.262200 0.767115 -9.601787
1 8447890486452875146 -7159109279155723609 0 59.308329 -20.952154 191.588482 -36.273875 4.187695 5.123790 4.197462 ... 0.000002 0.0 216.541660 y 17.558233 0.005002 17.857492 17.554491 61.530780 -0.494978
2 8447890486452875146 -4873256491932764747 0 59.311096 -20.952397 191.589976 -36.271576 4.186626 5.123845 4.197483 ... 0.000002 0.0 195.382460 y 17.549963 0.005543 17.857466 17.554466 61.533365 -0.494686
3 8447890486452875146 1305559744654628332 0 60.777308 -21.022067 192.309727 -35.031886 3.955013 5.153281 4.219282 ... 0.000002 0.0 540.058200 g 18.168968 0.002009 17.868053 18.170053 62.888899 -0.291068
4 8447890486452875146 8397385236521954431 0 60.780459 -21.022114 192.311149 -35.029184 3.955291 5.153343 4.219349 ... 0.000002 0.0 135.950940 u 19.484653 0.007957 17.868130 19.482130 62.891785 -0.290542
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
554 8447890486452875146 -8365500290426860658 0 34.527426 -19.093226 175.458082 -56.962581 8.344400 6.276025 5.771223 ... 0.000003 0.0 69.733864 y 18.868198 0.015459 19.190887 18.887888 38.601893 -4.994305
555 8447890486452875146 1801058191567595533 0 34.570614 -19.042110 175.406049 -56.903650 8.413429 6.275298 5.784518 ... 0.000002 0.0 85.718470 y 18.874094 0.012593 19.198600 18.895601 38.623722 -4.932613
556 8447890486452875146 -5207186459605150284 0 39.135911 -21.091318 181.754242 -53.806591 5.196970 6.077328 5.233632 ... 0.000003 0.0 68.407200 u 20.357357 0.015757 18.761307 20.375305 43.361119 -5.504170
557 8447890486452875146 -1561380110165288203 0 38.500882 -20.928133 181.115598 -54.293918 5.775282 6.069448 5.264884 ... 0.000002 0.0 354.167180 r 18.627779 0.003061 18.800613 18.628614 42.744100 -5.533677
558 8447890486452875146 5393674587725488964 0 38.498826 -20.927539 181.113408 -54.295468 5.777224 6.069422 5.264998 ... 0.000002 0.0 277.129180 i 18.507975 0.003911 18.800749 18.509748 42.742081 -5.533712

559 rows × 49 columns

.. code:: ipython3 # package ephemeris information into an sbpy object eph = Ephem.from_dict({'rh': phot['heliocentricdist'].values * u.au, 'delta': phot['topocentricdist'].values * u.au, 'phase': phot['phaseangle'].values * u.deg}) # simulated diasources do not have aperture information, but we use this for now: aper = 2 * u.arcsec .. code:: ipython3 fig = plt.figure(1, (8, 4.5), dpi=300) ax = fig.add_subplot(111) for filt in 'ugrizy': i = phot['filter'].values == filt afrho = Afrho.from_fluxd(f'LSST {filt}', phot['mag'][i].values * u.ABmag, aper, eph[i]) ax.scatter(phot['heliocentricdist'][i], afrho, marker='.', label=filt) plt.setp(ax, xlabel='rh (au)', ylabel=r'$A(\theta)f\rho$ (cm)') plt.legend() plt.show() .. image:: sssource-plot-a-comet-lightcurve_files/sssource-plot-a-comet-lightcurve_7_0.png